
1. Go through the following list of example
concepts. (They are quotes from a study
about how developers solve a bug.)

2. In your own notebook, for each numbered
concept, write down:
a) Whether the concept is Surface or Depth
b) The type of the concept.

Written Exercise – 5 minutes
Surface concept types:

explanation
preference
opinion
scene-setting
statement-of-fact
generalization

Depth concept types:
inner thinking
emotional reaction
guiding principle

CREATED BY: INDI YOUNG

1. Because a lot of times, like when you design
UI, user interfaces, sometimes things can be
too simple. And you don't get the end result
that you're looking for. Sometimes things
are too simple.

2. I will not do it that way because I have this
body of code. I will do it only the way that I
think it should be done for this particular
domain and this particular problem. I’ll pull
it out of the toolbox when I have the same
thing to solve, but I’ll build something new
and put it in the toolbox if it’s different.

3. Because I don’t want to reinvent the wheel if
the wheel's already coming … I’m not going
to waste hours and hours of development
effort to try to crank out on-screen keyboard
for Android if I already see it's on the
roadmap.

4. What we do is we get the tasks – we kind of
get the high level tasks of where we want to
go, like a end result. Then we kind of set
milestones in between. Like by this date, we
should have at least this much done. By this

date, we should have even more done, even
more so, until we get to completion.

5. When we installed on Linux there were issues
related to environment readiness, and the
error messages were not really proper. So it
was quite difficult to debug … Error message
would not really inform you; it was not really
helping me to figure out what went wrong.

6. Architecture just kind of – it's really based on
– one, it's like language, which computer
language we're going to be using. But when
you're dealing with like – with Apple, of
course, you obviously have to use Objective
C.

7. What I've done on this project, is like take a
problem that you're not sure how to solve in
this particular language, and solve it in a
language that you know how to solve it in.
And then just kind of, you know, write a
smaller program that does it in the language
that you know how to do it in. Then on the
side of that, try to write it in Java.

the answers are on the next slides

CREATED BY: INDI YOUNG

1. Surface – opinion: Because a lot of times, like when you design UI, user interfaces, sometimes
things can be too simple. And you don't get the end result that you're looking for.
Sometimes things are too simple. (IY: It’s a generalization, not tied to a point in time. I tried
to see if there was implied emotional frustration, but it wasn’t clear enough. That last
sentence is an opinion, so that’s what I decided this was.)

2. Depth – guiding principle: I will not do it that way because I have this body of code. I will do
it only the way that I think it should be done for this particular domain and this particular
problem. I’ll pull it out of the toolbox when I have the same thing to solve, but I’ll build
something new and put it in the toolbox if it’s different. (IY: It is a description about how they
make decisions given certain contexts, which is the very definition of a guiding principle.)

3. Depth – guiding principle: Because I don’t want to reinvent the wheel if the wheel's already
coming … I’m not going to waste hours and hours of development effort to try to crank out
on-screen keyboard for Android if I already see it's on the roadmap. (IY: Again, this is a rule
they follow given certain circumstances.)

4. Surface – explanation: What we do is we get the tasks – we kind of get the high level tasks of
where we want to go, like a end result. Then we kind of set milestones in between. Like by
this date, we should have at least this much done. By this date, we should have even more
done, even more so, until we get to completion. (IY: Speaker explaining to the Listener how
they plan a project. It would be nice to hear inner thinking, or history that got them to this
approach.)

CREATED BY: INDI YOUNG

5. Depth – (implied) emotional reaction: When we installed on Linux there were issues related
to environment readiness, and the error messages were not really proper. So it was quite
difficult to debug … Error message would not really inform you; it was not really helping me
to figure out what went wrong. (IY: it reads like an explanation of what happened, but there
is a layer of emotion here. The Speaker may not admit to the emotion, but they sound a bit
frustrated. With implied emotions, you can use the rest of the transcript to gauge what the
person is like, emotionally, for contexts like these.)

6. Surface – explanation: Architecture just kind of – it's really based on – one, it's like
language, which computer language we're going to be using. But when you're dealing with
like – with Apple, of course, you obviously have to use Objective C. (IY: The first part is
explanation, or statement of fact, either one. The Speaker is explaining to the Listener,
about how architecture is linked to language. Getting their inner thinking would help here.)

7. Depth – inner thinking: What I've done on this project, is like take a problem that you're not
sure how to solve in this particular language, and solve it in a language that you know how
to solve it in. And then just kind of, you know, write a smaller program that does it in the
language that you know how to do it in. Then on the side of that, try to write it in Java. (IY:
They use the phrase “you know” in two different ways, so it helped me to recite it aloud.
This is at a time and place, so not a generalization. It’s their thinking as they began this
project, and the way they say it could be extended to be a guiding principle. So, either.)

surface vs depth is the important part

which type of surface or depth is less important

if it’s depth, and you label it as inner thinking
but it’s really a guiding principle, it doesn’t
matter … the concept will get put into a pattern
with similar concepts no matter what its type

	Written Exercise – 5 minutes
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6

